
NTP, a misunderstood protocol

designing an efficient NTP subnet: the Opera case

• Marco Marongiu

• Currently working as Senior System Administrator for Opera
Software in the Company Headquarters, located in Oslo;

• Working steadily as a System Administrator since 1999:

– Sardegna IT

– Tiscali

– CRS4

• Co-founder and currently President of the “Apriti Software!”
association, promoting Open Standards and Data Formats;

• Co-founder of the GULCh Linux Users Group, the first one in
Sardinia, Italy (1996)

Who is this guy?

• Known worldwide for its web browser, Opera Desktop;

• Headquarters in Oslo, offices worldwide

• Opera invented a number of features that are common in today's
browsers:

– Tabbed browsing

– Sessions

– Mouse gestures

– Speed dial

• Although Opera's main products are not Free Software, the
company is well known for actively promoting Open Standards
(e.g.: CSS, HTML5, WebM...)

What is Opera Software?

NTP: common beliefs and mistakes

Let me start with a simple question...

What do you know
about NTP?

• General understanding of NTP is probably inversely proportional to
its adoption;

• What people (and, unfortunately, many sysadmins) commonly
think:

– Ntp is a protocol designed to synchronize computers' clocks

– You use it you by configuring ntpd on your machines, pointing
it to a one (or maybe more) “upstream” servers out there, and
syncing their clocks to the servers'

– This magically synchronizes the clock on any possible system

• If, for any reason, ntpd can't be used, then it's OK to run ntpdate in
cron once every minute/hour/day

• Do you know how do I call this?

What do you know about NTP?

• Another common misbelief about NTP is that it aims to
synchronize a computer's clocks to another computer's

• The real thing is that NTP aims to synchronize each
computer's clock with UTC

– What's the difference? Think about an orchestra: all
instruments are tuned to a well-defined reference (e.g.: for a
guitar, the 5th string is tuned to the “A” tune at 440Hz)

– If the instruments were tuned with each other in a cascade
fashion, the tuning's quality would be rather poor...

• This, and other protocol's “tricks” allow for the best
results
– Unfortunately, the quality of NTP on virtual machines is still

rather poor...

What do you know about NTP?

Bare-bones NTP

Back to basics

The NTP protocol is defined in RFC 1305 (v.3) and 5905 (v.4)

This document defines the Network Time Protocol version 4
(NTPv4), which is widely used to synchronize system clocks
among a set of distributed time servers and clients. […] The
NTP subnet model includes a number of widely accessible
primary time servers synchronized by wire or radio to national
standards. The purpose of the NTP protocol is to convey
timekeeping information from these primary servers to
secondary time servers and clients via both private networks
and the public Internet.

Doesn't this ring a bell?

• The RFC talks about a subnet model

– We have primary references available on the Internet,
and secondary servers

– Secondary servers should be used to synchronize
clients on a LAN

• It's a hierarchical, tree-like model where a small number
of servers synchronizes a large number of clients

• Servers and clients are layered in strata, with primary
servers sitting at stratum 1. Stratum number increases
as we go down the tree up to the leaves, or stratum 15.

– Reference clocks are said to sit at stratum 0

The NTP subnet model

The NTP subnet model (simplified...)

• Using public stratum 1 servers to synchronize single
clients is both an abuse and a bad practice

– An abuse, because you are really abusing a service
that someone provides for free, and degrading the
quality of that service

– A bad practice, because NTP is not meant to be
used that way!

• In the following slides we'll examine how NTP works
and we'll see the implementation we adopted in Opera

• At the end of the presentation, we'll also see some
special configuration, and a real debugging case

The NTP subnet model

• If you read the RFC, you'll find information about modes
of operation and protocol modes. I'll leave the gory
details to you;

• For the scope of this presentation, it will suffice to say
that:

– a node participating in an NTP subnet can “be” any
combination of: client, server, peer;

– a node could use NTP in: unicast, broadcast, multicast and
manycast modes;

– We are not going to cover manycast here; and we'll cover NTP
security in little detail

• The first design choice is the “casting” mode of the
subnet

Clients, servers, peers, *cast...

• In unicast mode, you point a node to a number of
upstream servers, specifying their DNS name or IP
address

• From a configuration point of view, it may be the
simplest way

• What if you have 100 or more nodes configured already
and:

– you need to change one of your servers and you can't use the
same IP or DNS name (for any reason);

– your network is heavily loaded, and this is impacting the quality
of the time service, or conversely:

– you have so many clients that NTP adds a sensitive load to the
network

Unicast

• Unicast is often the first choice for sysadmins: it should
actually be the last choice

• Cases where unicast is a good choice includes:

– Secondary servers

– Machines that you can't synchronize in any other
way (for any reason)

– You don't have any other option

• The advice here is: avoid unicast as much as you
can

Unicast

• In broadcast mode, your servers broadcast an NTP
packet every 64 seconds to the subnets it belongs to;

• After initialization, broadcast clients listen “passively” for
these packets

• This means that the network traffic is quite limited

– Maths say that each day has 24×60×60=86400 seconds

– One packet every 64 seconds means 86400/64=1350 packets
per day

– Since each packet is about 100 bytes long, this amounts to
about 135000 bytes per server per day

• e.g.: four servers would consume about 527kB per day

– Clients initialisation would add some more, but in normal cases
this should be feasible

Broadcast

• The problem with broadcast packets is that they are
subnet limited

• If you have a huge number of subnets, a decent setup
with broadcast could be difficult to achieve

– e.g.: VLANs could help, but if you have 100 subnets, do you
really want to have a few machines that have 100 (virtual)
interfaces?

• In large environments, broadcast is a no-op.

Broadcast

• In multicast mode, your servers broadcast an NTP
packet every 64 seconds to a multicast address;

– The “well known address” for NTP is 224.0.1.1, aka
ntp.mcast.net; you may use any multicast address anyway

• After initialization, multicast clients listen “passively” to
these packets

• Network traffic is quite limited in this case, too

• The notable advantage is that multicast is not subnet
limited!

– Provided that your network equipment can be properly
configured, NTP packets will reach all of your subnets

Multicast

• What's bad about multicast? It is not in widespread use,
so:

– It's not well known by many network admins

– It is not well implemented in many network devices
(routers, switches, firewalls)

– It may be badly implemented even on operating
systems

– It may require “additional” software to work properly
• The upside is that, once in place, it scales quite well

and needs little maintenance.
You will find a good description of pro's and con's of all these configurations
(and more) in Brad Knowles' article. See bibliography.

Multicast

• My advice is to use multicast whenever possible

• I used multicast in three different environments;

• Each time it required a lot of support from the network
admins to have it started, but once done, it was a great
experience for everybody:

– For me, because I like teamwork, and learned
something new each time;

– For the network admins who, after some initial
resistence, were quite happy to learn and apply
something they only learnt on the books (ok, that
wasn't always the case!)

– For users, who got a great NTP implementation

Which solution?

• I never tried manycast. It looks quite interesting, but it's
also quite new.

• I guess it would take much more effort to implement a
manycast solution, for the same reasons it is difficult to
implement the multicast solution, and more;

• Nevertheless, I would be damn happy to try it! Anyone
in? :)

manycasting is an automatic dynamic discovery and configuration paradigm. It is distinct from anycasting,
where a single service provider is selected from a number that may respond to a multicast invitation. Manycasting is
designed for highly robust services where multiply redundant respondents are continuously evaluated and
quasi-optimal subsets mitigated using engineered algorithms.[...]

The NTP Manycast scheme uses an expanding-ring search with pruning and variable poll rate in order to minimize
network overhead. [...] A client trolls the nearby network neighborhood looking for available manycast
servers, authenticates them [...] and then evaluates their time values with respect to other servers [...]. The intended
result is that each manycast client mobilizes client associations with the "best" three nearest available
manycast servers, yet automatically reconfigures to sustain this number should one or another degrade, fail or
become compromised

http://www.ece.udel.edu/~mills/autocfg.html

What about manycast?

• NTP implements symmetric cryptography and
authentication since at least v3 (1992)

• Initially based on the old MD5 checksums, it has added
some more over time

• v4 provides for public key cryptography and auth

– I did some research on that, and I got it working but not
“properly”

– The status at the time was that implementation details could
vary between minor versions of the ntpd (e.g., the
implementations in version 4.x.0 and 4.x.1 could be different –
and work differently)

• My suggestion is to stay on the symmetric, and watch
for a better future implementation of pubkey

What about security?

• There are not many suggestions for good architectures
out there. If you want to start from scratch, you'll
probably need to read a lot to learn who's authoritative
and who's not

– e.g., Prof.D.Mills probably is :)

• My suggestion is to take a good read of the documents
in bibliography

• The Sun blueprints mentioned are quite old, but they
still offer a very nice introduction to the full subject:
protocol, implementation, and debugging.

Subnet architecture

• You need either lightly loaded servers that are
already in use, or old, decommissioned, unused
servers that you wouldn't use otherwise

– You don't need bleeding-edge, super-multicore servers for
NTP; in fact, ntpd is single-threaded, and wouldn't gain
anything from that

– You don't want to mask it with NAT, or load balancing
solutions, or any other trick like that; they would actually
confuse your clients

– You don't want to put it on task-specific hardware (e.g. Routers
and switches): they are very good for the task they were
designed for, but poor at NTP

– You don't want virtual machines: ntpd assumes a stable CPU,
and virtual CPUs aren't

Choosing the hardware

Opera's NTP subnet

• Our architecture is a 3+1

• Each one of the four secondary servers will get its time
from (at least) two different primaries

– You will find an always updated list of public primaries on
support.ntp.org, along with geographic location and rules of
engagement for each server (check bibliography)

– Primaries are chosen as closest as possible

• None of the four will have any primary in common
– Primaries' reference clocks should be of different type as much

as possible

• Three servers will be peers, while the other one will run
solo

• Servers will use shared key cryptography

Opera's subnet architecture

Opera's subnet architecture

• ...the “solo” server looses reach from its upstreams and
starts drifting?

– Clients will see the other three running smoothly together, and
follow one of them

• ...one of the three peering looses reach from its
upstreams?
– It shouldn't drift because of the peering; and if it drifts, it will be

discarded by the clients for the same reasons above

• ...all servers lose reach to their upstreams?
– They will drift differently, the three peering will go together, and

the solo will go... solo :)

– The clients will collect statistics and decide which one is the
best for them

What if...?

• It is as simple as:

– Generate a keyfile using ntp-keygen -M

– Copy the generated file on all servers and clients

– Choose (at least) one key and tell the servers to
propagate packets “signed” with that key

• I personally prefer using one key per server, so
that I can “identify” the server with the key
number

– Tell the clients to trust the key(s) used by the servers
• Using an automated installation and/or a configuration

system can help a lot (e.g.: FAI, cfengine, puppet...)

Configuring cryptography and auth

Sample key file

ntpkey_MD5key_cooper.3494425072
Sat Sep 25 19:37:52 2010
 1 MD5 aI4Iqym@L}n;fe: # MD5 key
 2 MD5 9J'%p_AFQ23mwK! # MD5 key
 3 MD5 {6+L~+QljbAk[m9 # MD5 key
 4 MD5 "ga{mtas{QC*c:c # MD5 key
 5 MD5 "<VquB5aJ7.H+o= # MD5 key
 6 MD5 -o,1R6ya$ok6oGE # MD5 key
 7 MD5]U$"s6XlM(*C-Z" # MD5 key
 8 MD5 V2QT*QsC&Q~7r*} # MD5 key
 9 MD5 q/(MYy*ai5\2Bua # MD5 key
10 MD5))mvcG00k+n]ibi # MD5 key
11 MD5 'n_a8j|^m=Q:dTq # MD5 key
12 MD5 U+D/8LuWtQOZei\ # MD5 key
13 MD5 a48&$"LrhXgze(@ # MD5 key
14 MD5 ~2KA{YaL_BU;V"p # MD5 key
15 MD5 Ua{=/y>wOK\Yk3> # MD5 key
16 MD5 1Q^J6'OP[[4D-OS # MD5 key

Sample peering server configuration file

driftfile /var/lib/ntp/ntp.drift
keysdir /etc/ntp
keys /etc/ntp/ntp.keys

trustedkey 4

server stratum1-1.xmp iburst dynamic
server stratum1-2.xmp iburst dynamic
peer peer1
peer peer2

broadcast 224.0.1.1 key 4 ttl 7

restrict -4 default kod notrap nomodify nopeer
restrict -6 default kod notrap nomodify nopeer
restrict 127.0.0.1
restrict ::1

Sample solo server configuration file

driftfile /var/lib/ntp/ntp.drift
keysdir /etc/ntp
keys /etc/ntp/ntp.keys

trustedkey 1

server stratum1-3.xmp iburst dynamic
server stratum1-4.xmp iburst dynamic

broadcast 224.0.1.1 key 1 ttl 7

restrict -4 default kod notrap nomodify nopeer
restrict -6 default kod notrap nomodify nopeer
restrict 127.0.0.1
restrict ::1

Sample multicast client configuration file

driftfile /var/lib/ntp/ntp.drift
keys /etc/ntp/ntp.keys

trustedkey 1 2 3 4

multicastclient 224.0.1.1

restrict -4 default kod notrap nomodify nopeer noquery notrust
restrict -6 default kod notrap nomodify nopeer noquery notrust

restrict 127.0.0.1
restrict ::1

• This architecture should guarantee for good time
accuracy:

– For very long-lasting outages impacting many (not
all) of them

– For short- to medium-lasting outage impacting all of
them

• It provides high redundancy: a single server full
outage doesn't significantly impact the whole service

• Thanks to the multicast implementation, a server can
be replaced transparently for the clients

• Changing the solo server has no impact; changing one
of the peering may require reconfiguration and very
short downtime for each one

Summing up

• None of the secondary servers in use in Opera is
dedicated to NTP

• Thanks to a careful choice of the servers, it is providing
a very good service (up to the millisecond offset, or
less)

• Multicast is not reaching all our subnets yet, we are
adding more and more over time.

• “External” users of the service helped us testing it, and
they were quite satisfied.

• Any question before we move to more complex
setups?

Summing up

More complex setups: repeaters

• There may be subnets of your sites that can't be
reached by the multicast packets propagated by your
NTP servers, but allow multicast on the inside

• In this case, you may want to configure further
secondary servers in that subnet (at least two) that we
call repeaters.

• E.g., you will configure two machines, each one using
two non-overlapping secondaries as upstreams, and
propagating multicast in their subnet or “island”

• If you need more redundancy or accuracy, you may
want to add more repeaters, or set-up separate
secondaries for this “island”

Reaching unreachable subnets

More complex setups: clusters

• It's always important that cluster members have their
clocks in good sync

• For small clusters (e.g.: two to four machines) a
solution is to add a peering relation between cluster
members

– You configure cluster members as “regular” clients,
adding a “peer” directive for all other cluster
members

• Take good care at not creating loops! (NTP has no
loop detection mechanism)

Syncing cluster members

More complex setups: geographic clusters

• You may have a service that is served in different,
geographically-dispersed datacenters

• In this case, it may be important that the clocks in the
two datacenters evolve accordingly

• If there is a chance that the two datacenters can reach
each other in adverse conditions, a possible
implementation could be the following

Syncing datacenters

Syncing two datacenters

When things go wrong...

• Things may go wrong sometimes

– that's one of the reasons why System Administrators have a
job, after all...

• There are no general rules to debug a system problem;
NTP is no exception

• In the next few slides I'll show a concrete example; for
general advice and tools, please have a look at the
bibliography

Debugging NTP

• Two pairs of Xen servers in two different locations:
same OS (Debian 5 “Lenny”), same hardware, same
configuration, same everything!

• The Debian wiki suggested two different configurations
for Xen servers, and I tried them, but without success

• scanning the logs revealed the time resets

• A number of sources revealed this kind of problem on
Xen is quite common

• Setting a “normal” configuration on both pairs worked
for one, but didn't for the other:

The Xen server and the “resounding” offset

• How was the offset evolving? It was time to activate
statistics

• The first pair synced perfectly, the second had the
offset oscillating up and down in wider and wider
waves, until ntpd reset the clock

• This cycle repeated over and over

• All known/documented solutions failed, or made the
problem worse

• What to do?

Step 1: collect statistics

• You don't need extra tools to gather ntp statistics: ntpd
provides them for free

– We activated two types: loopstats and peerstats

• Loopstats tell us how the local clock is evolving, peerstats record
information each time a packet is received from a source

– See ntpd documentation to make sense of the collected data

• Using gnuplot, it was easy to compare the four Xen
servers over a long interval, and...

Step 1: collect statistics

• To activate some stats:
statsdir /var/log/ntpstats/
statistics loopstats peerstats
filegen loopstats file loopstats type day enable
filegen peerstats file peerstats type day enable

• To plot files in gnuplot:
plot "./server1/loopstats" using 2:3 with
linespoints, "./server2/loopstats" using 2:3 with
linespoints

• This will show a plot that will help you compare how the
offset is evolving

Step 2: analyse statistics

• Bad behaviour indeed...

• Maybe switching to unicast and letting the client choose
when to poll its upstream could help...

• Well... it didn't

• More searches for solutions resulted in 99% crap and
1% irrelevant information

• A difference in /etc/adjtimex raised some hopes, but
they were short lived...

Step 3: check for differences

• It was time to ask for help. There are a lot of
knowledgeable people in SAGE, and I am a SAGE
member...

• Unfortunately, no one answered...

• While waiting for an answer, I restored the same
configuration on all servers and kept looking for a
solution

• When I was almost decided for manual calibration, I
found there was an ntp IRC channel. Why not to ask
there?

• In the meanwhile...

Step 4: ask for help

mlichvar: bronto: i think i have seen the same problem
some time ago

bronto: mlichvar: good... erm... sort of ;) How did you
manage to solve it?

mlichvar: bronto: i was just helping one guy and he
didn't solve it :)

mlichvar: bronto: it looked like broken PLL in the kernel

bronto: mlichvar: erm... what's a PLL? :(

mlichvar: the thing that adjusts offset and frequency

mlichvar: in the offset plot it looked like the time
constant was too short

mlichvar: there is one easy thing you could try first

mlichvar: disabling kernel discipline by adding "disable
kernel" to ntp.conf

mlichvar: if that works, it's definitely a kernel bug

***bronto adding disable kernel to ntp.conf on the Xen
servers

Step 5: experts to the rescue: #ntp

Some bibliography

Bibliography

RFCs are the authoritative source of information for any
protocol (assuming that such RFC exists), so:

• Mills, Martin, Burbank, Kasch: Network Time Protocol
version 4: protocol and algorithms specification; RFC
5905; June 2010

• Mills: Network Time Protocol (version 3) specification,
implementation and analysis; RFC 1305; March 1992

Bibliography

Although a bit outdated, the following Sun BluePrints
“Using NTP to Control and Synchronize System Clocks”,
by Deeths and Brunette, are an excellent summary:

• Part I: Introduction to NTP; July 2001

• Part II: Basic NTP administration and architecture;
August 2001

• Part III: NTP monitoring and troubleshooting;
September 2001

Bibliography

An excellent article about the pros and cons of different
solutions for an NTP infrastructure. It assumes some
knowledge though:

• Brad Knowles: building scalable NTP server
infrastructures; in “;login:”; October 2008
http://www.usenix.org/publications/login/2008-10/pdfs/knowles.pdf

Bibliography

Web sites at ntp.org are, of course, more than
authoritative:

• Community support:
http://support.ntp.org

• Public NTP services are available at:
http://support.ntp.org/bin/view/Servers/WebHome

• ...but be sure to read the rules of engagement first!!!
http://support.ntp.org/bin/view/Servers/RulesOfEngagement

• ...both the general ones (above) and those specific to
each server, e.g.:
http://support.ntp.org/bin/view/Servers/NtpOneRnpBr

Bibliography

For ntpd, the reference implementation which is normally
installed by default on all major Linux distributions, the
authoritative sources are:

• Home of the Network Time Protocol:
http://www.ntp.org/

• NTP Documentation archive:
http://doc.ntp.org/

• NTP Debugging Techniques
http://doc.ntp.org/4.2.6/debug.html

• Monitoring Options
http://doc.ntp.org/4.2.6/monopt.html

Bibliography

Do you want to know the full story about the debugging of
the Xen servers?

• For the thread in the SAGE mailing list, check these:
http://mailman.sage.org/pipermail/sage-members/2010/msg01058.html
http://mailman.sage.org/pipermail/sage-members/2010/msg01057.html
http://mailman.sage.org/pipermail/sage-members/2010/msg01069.html

• And if you have the same problem on any of your Xen
servers running Lenny, check the workaround #3 at:
http://wiki.debian.org/Xen#A.27clocksource.2BAC8-0.3ATimewentbackwards.27

http://mailman.sage.org/pipermail/sage-members/2010/msg01058.html
http://mailman.sage.org/pipermail/sage-members/2010/msg01057.html
http://mailman.sage.org/pipermail/sage-members/2010/msg01069.html
http://wiki.debian.org/Xen#A.27clocksource.2BAC8-0.3ATimewentbackwards.27

www.opera.com

	Picture frontpage
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49
	Pagina 50
	Pagina 51
	Pagina 52
	Pagina 53
	Pagina 54
	Pagina 55
	Pagina 56
	Pagina 57
	Pagina 58
	Pagina 59
	Pagina 60
	Pagina 61
	Pagina 62
	Pagina 63
	www.opera.com

