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Software requirements nowadays

Highly Responsive, Real Time

Scalable

Resilient

Petabytes
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New problems

We need better tools

http://www.pacificrimmovie.net/
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Reactive

“readily responsive to a stimulus”

Component active and ready to respond to event

Event Driven
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Reactive

React to events → Event Driven

React to failure → Resilient

React through a UI → Interactive 

React to load → Scalable
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React to event - Event driven

Asyncronous and loosely coupled

+

Non blocking

=

lower latency and higher throughput 
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React to event - Event driven

 

Productors push asyncronously data 

towards consumers (message passing)

better resource usage 

instead of 

having consumers continually ask  for data
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React to event - Event driven

 

Non blocking operation

mean have all the time 

the application responsive 

 even under failure 
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Event driven

Actors , No shared mutable state

Promise , Composable

Message passing asyncronous, non Blocking

Lock free concurrency
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Scalable

“Capable of being easily expanded or upgraded on 
demand”

Event driven and message passing are the foundations
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Scalable

“loose coupling and location independence between 
components and subsystems make it possible to scale out 

the system onto multiple node”

Location transparency

!= 

transparent distributed computing
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Resilient

“the capacity to recover quickly from difficulties”

In a reactive application, resilience is part of the design from 
the beginning
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Resilient

Bulkheads and Circuit Breaker patterns

Isolate failure

Manage Failure locally

Avoid cascading failure
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Resilient

Bulkheads 

Failure is modeled explicitly in order to be 
compartmentalized, observed, managed and configured in 
a declarative way, and where the system can heal itself and 

recover automatically
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Resilient

Actor lightweight isolated process 

(400 bytes of heap space)

Each process has its own supervisor

In case of failure the supervisor receive as async msg

the error

The supervisor can choose the recovery strategy

kill, restart, suspend/resume 
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Resilient

Actor decoupling business logic from handling error

                      Mailbox Guaranteed Delivery

    my-dispatcher {

    mailbox-type = akka.actor.mailbox.filebased.FileBasedMailboxType

    }
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Resilient

override val supervisorStrategy = 
OneForOneStrategy(maxNrOfRetries = 10, 
withinTimeRange = 1 minute) {

 case _: java.sql.SQLException => Resume

 case _: NullPointerException => Restart

       case _: Exception => Escalate

}
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Resilient

A circuit breaker is used to provide stability and prevent 
cascading failures in distributed systems.

doc.akka.io/docs/akka/current/common/circuitbreaker.html

val breaker =    
         new CircuitBreaker(
                context.system.scheduler,      
                maxFailures = 5,      
                callTimeout = 10.seconds,      
                resetTimeout = 1.minute).onOpen(notifyMeOnOpen())
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Responsive

quick to respond or react appropriately

Reactive applications use observable models, event 
streams and stateful clients.
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Tools

Actors

Agent

Future

Functional Reactive Programming
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Tools

Actors

Share nothing

Each actor has a Mailbox (message queue)

Comunicates through async and non blocking message 
passing

Location transaparent
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Tools

Agents

Reactive memory cells

Send an update function to the agent which:

1) add to an ordered queue, to be

2)applied to the agent async and non blocking

Reads are “free”

Composes

http://clojure.org/agents
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Agent
import scala.concurrent.ExecutionContext.Implicits.global

import akka.agent.Agent

 

 val agent = Agent(5)

  

 agent.send(7); //Update (atomically and asyncronously)

 val result = agent.get

 //Reading an Agent's current value happens immediately

If an Agent is used within an enclosing Scala STM transaction, then it will 
participate in that transaction

  With future computation 

  val future = agent.future
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Tools

Futures

Span concurrency with not yet computed result

Write once, read many

Freely sharable

Allows non blocking composition

Monadic

Built in model for managing failure
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Future

Future Read-only placeholder

val f1 = Future {  
"Hello" + "World"}

val f2 = f1 map { 
x ⇒  x.length

}
val result = Await.result(f2, 1 second)
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Promise

Writeable, single-assignment container, which completes a 
Future

import scala.concurrent.{ future, promise }

val p = promise[T]
val f = p.future
val producer = future {  
val r = produceSomething()  
p success r  
ContinueDoingSomethingUnrelated()}

val consumer = future {  
startDoingSomething()  
f onSuccess {    
   case r => doSomethingWithResult()  }
}
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Tools

Functional reactive programming

Extends futures with concept of stream

Functional variation of the observer pattern

A signal attached to a stream of events

The signal is reevaluated for each event

Model events on a linear  timeline deterministic

Compose nicely

Rx, RXJava, Scala.RX, Reactive.js, Knockout.js
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References

● http://www.reactivemanifesto.org/

● http://akka.io/ (JAVA and SCALA API)

● Deprecating the observer pattern

http://lampwww.epfl.ch/~imaier/pub/DeprecatingObserversTR
2010.pdf

http://www.reactivemanifesto.org/
http://akka.io/
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Q &A
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Thanks for your attention
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