
Reactive Applications
di Massimiliano Dessì

Reactive applications

2

Speaker

 Massimiliano Dessì has more than 13 years of
 experience in programming.

 He’s a proud father of three.

 Manager of GDG Sardegna, Founder of S
 SpringFramework IT, co-founder of Jug
 Sardegna. Author of Spring 2.5 AOP.

 He works and lives in Cagliari, Italy.

@desmax74

Reactive applications

3

Reactive applications

4

Software requirements nowadays

Highly Responsive, Real Time

Scalable

Resilient

Petabytes

Reactive applications

5

New problems

We need better tools

http://www.pacificrimmovie.net/

Reactive applications

6

Reactive

“readily responsive to a stimulus”

Component active and ready to respond to event

Event Driven

Reactive applications

7

Reactive

React to events → Event Driven

React to failure → Resilient

React through a UI → Interactive

React to load → Scalable

Reactive applications

8

React to event - Event driven

Asyncronous and loosely coupled

+

Non blocking

=

lower latency and higher throughput

Reactive applications

9

React to event - Event driven

Productors push asyncronously data

towards consumers (message passing)

better resource usage

instead of

having consumers continually ask for data

Reactive applications

10

React to event - Event driven

Non blocking operation

mean have all the time

the application responsive

 even under failure

Reactive applications

11

Event driven

Actors , No shared mutable state

Promise , Composable

Message passing asyncronous, non Blocking

Lock free concurrency

Reactive applications

12

Scalable

“Capable of being easily expanded or upgraded on
demand”

Event driven and message passing are the foundations

Reactive applications

13

Scalable

“loose coupling and location independence between
components and subsystems make it possible to scale out

the system onto multiple node”

Location transparency

!=

transparent distributed computing

Reactive applications

14

Resilient

“the capacity to recover quickly from difficulties”

In a reactive application, resilience is part of the design from
the beginning

Reactive applications

15

Resilient

Bulkheads and Circuit Breaker patterns

Isolate failure

Manage Failure locally

Avoid cascading failure

Reactive applications

16

Resilient

Bulkheads

Failure is modeled explicitly in order to be
compartmentalized, observed, managed and configured in
a declarative way, and where the system can heal itself and

recover automatically

Reactive applications

17

Resilient

Actor lightweight isolated process

(400 bytes of heap space)

Each process has its own supervisor

In case of failure the supervisor receive as async msg

the error

The supervisor can choose the recovery strategy

kill, restart, suspend/resume

Reactive applications

18

Resilient

Actor decoupling business logic from handling error

 Mailbox Guaranteed Delivery

 my-dispatcher {

 mailbox-type = akka.actor.mailbox.filebased.FileBasedMailboxType

 }

Reactive applications

19

Resilient

override val supervisorStrategy =
OneForOneStrategy(maxNrOfRetries = 10,
withinTimeRange = 1 minute) {

 case _: java.sql.SQLException => Resume

 case _: NullPointerException => Restart

 case _: Exception => Escalate

}

Reactive applications

20

Resilient

A circuit breaker is used to provide stability and prevent
cascading failures in distributed systems.

doc.akka.io/docs/akka/current/common/circuitbreaker.html

val breaker =
 new CircuitBreaker(
 context.system.scheduler,
 maxFailures = 5,
 callTimeout = 10.seconds,
 resetTimeout = 1.minute).onOpen(notifyMeOnOpen())

Reactive applications

21

Responsive

quick to respond or react appropriately

Reactive applications use observable models, event
streams and stateful clients.

Reactive applications

22

Tools

Actors

Agent

Future

Functional Reactive Programming

Reactive applications

23

Tools

Actors

Share nothing

Each actor has a Mailbox (message queue)

Comunicates through async and non blocking message
passing

Location transaparent

Reactive applications

24

Tools

Agents

Reactive memory cells

Send an update function to the agent which:

1) add to an ordered queue, to be

2)applied to the agent async and non blocking

Reads are “free”

Composes

http://clojure.org/agents

Reactive applications

25

Agent
import scala.concurrent.ExecutionContext.Implicits.global

import akka.agent.Agent

 val agent = Agent(5)

 agent.send(7); //Update (atomically and asyncronously)

 val result = agent.get

 //Reading an Agent's current value happens immediately

If an Agent is used within an enclosing Scala STM transaction, then it will
participate in that transaction

 With future computation

 val future = agent.future

Reactive applications

26

Tools

Futures

Span concurrency with not yet computed result

Write once, read many

Freely sharable

Allows non blocking composition

Monadic

Built in model for managing failure

Reactive applications

27

Future

Future Read-only placeholder

val f1 = Future {
"Hello" + "World"}

val f2 = f1 map {
x ⇒ x.length

}
val result = Await.result(f2, 1 second)

Reactive applications

28

Promise

Writeable, single-assignment container, which completes a
Future

import scala.concurrent.{ future, promise }

val p = promise[T]
val f = p.future
val producer = future {
val r = produceSomething()
p success r
ContinueDoingSomethingUnrelated()}

val consumer = future {
startDoingSomething()
f onSuccess {
 case r => doSomethingWithResult() }
}

Reactive applications

29

Tools

Functional reactive programming

Extends futures with concept of stream

Functional variation of the observer pattern

A signal attached to a stream of events

The signal is reevaluated for each event

Model events on a linear timeline deterministic

Compose nicely

Rx, RXJava, Scala.RX, Reactive.js, Knockout.js

Reactive applications

30

References

● http://www.reactivemanifesto.org/

● http://akka.io/ (JAVA and SCALA API)

● Deprecating the observer pattern

http://lampwww.epfl.ch/~imaier/pub/DeprecatingObserversTR
2010.pdf

http://www.reactivemanifesto.org/
http://akka.io/

Reactive applications

31

Q &A

Reactive applications

32

Thanks for your attention

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32

