
Types
Subprograms

Packages
Conclusion

Contract-based Programming
A Route to Finding Bugs Earlier

Jacob Sparre Andersen

Jacob Sparre Andersen Research & Innovation

October 2014

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Contract-based Programming

A software development technique, used to find programming
errors earlier in the development process.

In its strictest form, the “contracts” are checked as a part of the
compilation process, and only a program which can be proven
to conform with the contracts will compile.

In a less strict form, it is more similar to “preventive debugging”,
where the contracts are inserted as run-time checks, which
makes it more likely to identify errors during testing.

Some of the programming languages which explicitly support
contract-based programming are Eiffel, SPARK and Ada.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Types
Range constraints
Generalised constraints

Types

We can declare different types representing different kinds of
values:

type Input_Voltage is delta 0.001 range -5.0 .. +5.0;

type Colours is (Red, Green, Blue);
type Months is (Jan, Feb, Mar, Apr, May, Jun,

Jul, Aug, Sep, Oct, Nov, Dec);

type Apples is range 0 .. 10_000_000;
type Oranges is range 0 .. 10_000_000;

type Disc_Point is private;

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Types
Range constraints
Generalised constraints

Types (continued)

The point of specifying a type is two-fold:
To specify a collection of possible values and operations
on the values. – For example integer values from 0 to
10’000’000 with the operations +, −, ×, / and modulus.
To separate different kinds of values. – For example to
keep counts of apples and oranges separate, if that is
intended.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Types
Range constraints
Generalised constraints

Range constraints

In the previous examples we declared types each with some
possible values.

If the type has a simple ordering, it may be possible to declare
a subtype (subset) of the base type with more limiting upper
and/or lower bounds on the possible values.

In the Ada 2012 standard library Natural is made a subset of
Integer with a different lower bound:

subtype Natural is Integer range 0 .. Integer’Last;

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Types
Range constraints
Generalised constraints

Generalised constraints

We might want to put any, arbitrary constraints on which values
are allowed in a subtype of a type.

Summer:

subtype Summer is Months
with Static_Predicate => Summer in Nov .. Dec |

Jan .. Apr;

Primes:

subtype Prime is Integer range 2 .. Integer’Last
with Dynamic_Predicate
=> (for all N in 2 .. Prime - 1

=> Prime mod N /= 0);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Types
Range constraints
Generalised constraints

Generalised constraints (continued)

Make sure that Disc_Point objects stay on or inside the unit
circle:

package Places is
type Disc_Point is private;
-- various operations on disc points

private
type Disc_Point is

record
X, Y : Float range -1.0 .. +1.0;

end record
with Invariant => Disc_Point.X ** 2 +

Disc_Point.Y ** 2 <= 1.0;
end Places;

Adapted from the Ada 2012 rationale.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Types
Range constraints
Generalised constraints

Types and type invariants (a kind of summary)

Contract-based programming is typically considered to be an
extension of strong, static typing.

Contract-based programming extends the concept of types by
allowing the programmer to declare “subtypes” whose values
have to fullfill a constraint described in the form of an arbitrary
boolean expression.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions

Globals and formal parameters

When we declare a subprogram, the first steps are to declare:
Which formal parameters and global (state) variables are
used and/or affected by the subprogram.
If they are used and/or changed.
The type of the formal parameters. (The type of the global
variables must be declared elsewhere.)

procedure Increment (Counter : in out Integer;
Step : in Integer);

function Voltage return Input_Voltages
with Globals => (Input => GPIO);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions

Subtypes for formal parameters

The next step is to narrow down the types of the formal
parameters with subtypes where it is appropriate.

We count from zero and up (natural numbers). An increment is
by one or more (positive numbers):

procedure Increment (Counter : in out Natural;
Step : in Positive);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions

Preconditions for calling

In addition to specifying subsets of allowed values for formal
parameters, we may have some conditions on the system
state and formal parameters before it makes sense to call the
subprogram.

These conditions are known as preconditions.

You can only write to open, writable files:

procedure Put (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File)) and then
(Mode (File) in Out_File | Append_File);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions

Preconditions for calling (continued)

Continuing our Increment example...

There is an upper limit (Natural’Last) to how far we can
count with our selected type:

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => (Counter < Natural’Last);

We should not attempt an increment so large that we go beyond
the upper limit of how far we can count (Natural’Last):

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => (Counter < Natural’Last) and
(Step <= Natural’Last - Counter);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions

Postconditions of subprogram calls

The implementor of a subprogram may make certain promises
(guarantees) about the state of the system, any return values
and modified formal parameters once a subprogram returns.

These promises are known as postconditions.

The line number of a file is incremented when you write a line
to it:
procedure Put_Line (File : in File_Type;

Item : in String)
with Pre => (Is_Open (File)) and then

(Mode (File) in Out_File | Append_File),
Post => (Line (File) = Line (File)’Old + 1);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions

Postconditions of subprogram calls (continued)

Continuing our Increment example...

Once we’ve incremented the counter it must be larger than
zero:

procedure Increment (Counter : in out Natural;
Step : in Positive)

with Pre => (Counter < Natural’Last) and
(Step <= Natural’Last - Counter),

Post => (Counter > 0);

Another form is to make the precondition
Counter in 0 .. Natural’Last - Step
and the postcondition
Counter = Counter’Old + Step.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Globals and formal parameters
Subtypes for formal parameters
Preconditions
Postconditions

Subprograms (a kind of summary)

Contract-based programming means that you:
Specify which global variables are read and/or modified
by each subprogram.
Specify if global variables and formal parameters are read
from and/or written to.
Specify what each subprogram requires of the global
system state and its formal parameters.
Formalise your promises about the global system state,
any return values and the values of the formal parameters
as a subprogram returns.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Packages

While we typically don’t write contracts for entire packages, it
does make sense to take a broader view of the pre- and
postconditions of all the subprograms declared in a package.

If one specifies contracts one subprogram at a time, one may
miss contract details on one subprogram, which would be
helpful for another subprogram.

The following slides contain a few guidelines for ensuring
consistent pre- and postconditions for entire packages.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Aligning pre- and postconditions (guidelines)

Do post- and preconditions match for likely sequences of calls
to your subprograms?

1 Sketch likely, valid sequences of subprogram calls.
2 For each call in the identified sequences:

a Verify that the documented state of the input data matches
constraints and preconditions for the called subprogram.

b If there is a mismatch: Attempt to narrow down the
documented, possible output values of the source of the
input data (by changing constraints and postconditions).

c Identify the documented state of the modified parameters
after the call.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Aligning pre- and postconditions (example)

We look at a simple Text I/O package with some contracts
added:

procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String);

procedure Close (File : in out File_Type);

procedure Put_Line (File : in File_Type;
Item : in String)

with Pre => (Is_Open (File)) and then
(Mode (File) in Out_File | Append_File),

Post => (Line (File) = Line (File)’Old + 1);

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Aligning pre- and postconditions (example)

1 A likely call sequence:

Open (File => Target,
Name => "output.txt",
Mode => Out_File);

Put_Line (File => Target,
Item => "Hello.");

Close (File => Target);

2 Open:
a File, Name and Mode all ok. No preconditions.
b (no mismatch)
c Target can have any valid File_Type value.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Aligning pre- and postconditions (example)

2 Put_Line:
a Preconditions on File not matched by the documented

constraints on Target. Item ok.
b Target was last modified by Open, so we add some

appropriate postconditions there:

procedure Open (File : in out File_Type;
Mode : in File_Mode;
Name : in String)

with Post => (Is_Open (File) and
Text_IO.Mode (File) =

Mode);

c We now know that Target is open and has the mode
Out_File.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Aligning pre- and postconditions (example)

2 Close:
a Close has no preconditions, so Target matches the

documented requirements for the formal parameter File.
b (no mismatch)
c We know that Target has been changed, so it can have any

valid File_Type value.

As some of you may have noticed, I have omitted to document
that it is an error to open a file which already is open, or to
close one which already is closed. – This is left as an exercise.

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

Types
Subprograms

Packages
Conclusion

Contact

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation

jacob@jacob-sparre.dk
http://www.jacob-sparre.dk/

Examples from this presentation:
http://www.jacob-sparre.dk/programming/

linux-day-2014-examples.zip

You can find my Open Source software repositories at:
http://repositories.jacob-sparre.dk/

Jacob Sparre Andersen Contract-based Programming A Route to Finding Bugs Earlier

http://www.jacob-sparre.dk/
http://www.jacob-sparre.dk/programming/linux-day-2014-examples.zip
http://www.jacob-sparre.dk/programming/linux-day-2014-examples.zip
http://repositories.jacob-sparre.dk/

	Types
	Types
	Range constraints
	Generalised constraints

	Subprograms
	Globals and formal parameters
	Subtypes for formal parameters
	Preconditions
	Postconditions

	Packages
	Conclusion

