

Many projects, one code

code repositories and deployment strategies
for configuration management

Marco Marongiu (@brontolinux)

Do the right thing...

Do the right thing...

One repository per project or one for all?

One per project + shared code
how to keep track of which version of the shared code was
deployed at time t?

One repository for all
how make the project code and the shared code merge
gracefully?

A mix?
e.g.: per-project branches plus shared code in master?

The answer is: it depends...

Knowledge and common sense

Not many good examples out there, buried in tons
of *******.

Knowledge and common sense is all you have to
understand what fits best for you:

- the knowledge of your problem

- the knowledge of your VCS of choice

- common sense

Experience can save you. If the problem is new for
you, brace for impact...

Separated lives

tools

puppet code

Separated lives

master

proj1-dev

proj2-dev

proj1

proj2

We all live in a...

opera/
|-- controls
| |-- cf_report.cf
| |-- cf_runagent.cf
| `-- cf_serverd.cf
|-- def.cf
|-- libraries
| `-- site-opera.cf
|-- promises.cf
|-- services
. . .

common/
|-- controls
| |-- cf_agent.cf
| |-- cf_execd.cf
| `-- cf_monitord.cf
|-- libraries
|-- modules
|-- services
|-- sources
|-- templates
|-- tools
`-- update.cf
. . .

1

2

/common

/projX

It works, but...

➢command line long and ugly

make -C /var/cfengine/git/common/tools/deploy deploy
PROJECT=projX BRANCH=dev-projX-foo SERVER=projX-
testhub

➢not optimized to deploy on more than one server at a time

for SERVER in projX-hub{1..10} ; do make -C
/var/cfengine/git/common/tools/deploy deploy
PROJECT=projX BRANCH=dev-projX-foo SERVER=$SERVER ;
done

➢deploying on all the policy hubs required to remember all
of the addresses/hostnames

Meet cf-deploy

Front-end to make for deployments

Initially a bash script, but...

two configuration files per each
(project, environment, location) triple

it works, but...

165/231 lines of bash
40+ config files

348 lines in total

266/457 lines of perl
2 config files

493 lines in total

project, directory, type
proj1, project1, remote
proj2, project2, remote
proj3, project3, remote
proj4, project4, remote
myownpc, myownpc, local

Location, Project, Environment, CNAME
Ashburn, proj1, prod, proj1-us-cfengine.doma.in
Amsterdam, proj2, prod, cfengine-ams.amsterd.am
Amsterdam, proj2, prod, cfengine-ams.oursh.op
Ashburn, proj2, prod, cfengine-ash.oursh.op
Thor, proj3, prod, cfengine-proj3-prod.icela.nd
Thor, proj3, staging, cfengine-proj3-stag.icela.nd
Oslo, proj2, prod, cfengine.oursh.op
Seattle, proj4, prod, cf-proj4-sea.doma.in
Wroclaw, proj2, prod, cfengine.wrocl.aw
Oslo, proj3, test, cf-test-v01.os.lo
Oslo, proj4, test, cf-test-v06.os.lo
Oslo, proj1, test, cf-test-v10.os.lo
Oslo, proj2, test, cf-test-v12.os.lo
Oslo, proj4, test, cf-test-v20.os.lo
Oslo, proj2, preprod, pre-cfengine.os.lo
Seattle, proj2, preprod, pre-cfengine-sea.oursh.op
Thor, proj2, preprod, pre-cfengine-thor.oursh.op
Ashburn, proj4, preprod, pre-cf-proj4-ash.doma.in
Seattle, proj4, preprod, pre-cf-proj4-sea.doma.in
none, myownpc, prod, /var/cfengine/inputs

How cf-deploy works

1.it reads from one configuration file which
subdirectory should be deployed together
with /common and the project type
➔ remote: must rsync to a remote server to deploy
➔ local: must rsync to a local filesystem

2.it reads the other configuration file to
calculate the list of the hubs to deploy to

3.it runs the requested action.

How to deploy a project

Before (when the project has only one hub!):

make -C
/var/cfengine/git/common/tools/deploy
deploy PROJECT=projX BRANCH=master
SERVER=projX-hub

After (regardless):

cf-deploy deploy projX

or even shorter:

cf-deploy projX

How to preview a change
(which files will be modified by the deployment)

Before (one hub!):

make -C
/var/cfengine/git/common/tools/deploy
preview PROJECT=projX BRANCH=master
SERVER=projX-hub

After (regardless):

cf-deploy preview projX

How to preview a change
(diff the files)

Before:

make -C
/var/cfengine/git/common/tools/deploy
diff PROJECT=projX BRANCH=master
SERVER=projX-hub

After:

cf-deploy diff projX hub projX-hub

How to operate on a branch
other than master

Before:

make -C
/var/cfengine/git/common/tools/deploy
action PROJECT=projX BRANCH=name
SERVER=projX-hub

After:

cf-deploy action projX branch name

Operate on a specific environment
for a project, e.g. test

Before:

for SERVER in list hubs in test ; do
make -C
/var/cfengine/git/common/tools/deploy
action PROJECT=projX BRANCH=master
SERVER=$SERVER ; done

After:

cf-deploy action projX-test

Operate on a specific location
for a project

Before:

for SERVER in list hubs in location ; do
make -C
/var/cfengine/git/common/tools/deploy
action PROJECT=projX BRANCH=master
SERVER=$SERVER ; done

After:

cf-deploy action projX-location

List all hubs

Before: a separate list is needed, please
remember to keep it updated

? ? ?

After: the list is part of the tool

cf-deploy list all_hubs
cf-deploy list hubs # non-test only

Is there more?
$ cf-deploy list projects
opera
myownpc
example
$ cf-deploy show myownpc
Description for project myownpc
Project type: local
Git project ID: myownpc
Target dir: /var/cfengine/inputs
$ cf-deploy show example
Description for project example
Project type: remote
Git project ID: example
Hubs:

cfengine.example.com
cfengine-test.example.com

Summing up...

● One size doesn't fit all
● one repository for all projects
● tools, common libraries and project-specific

parts together in the same repository
● libraries and project-specific parts merged at

deploy time

Advantages of this solution

● all projects benefit from the improvements
made to the libraries

● branches are used mainly for development of
new features or the implementation of non-
trivial changes

● possibility to use branches as "masters" for
projects that need a non rolling approach
for the deployment of shared libraries

Shortcomings

● projects can get part of the shared libraries
they are not interested in

● an unnoticed bug in one of the shared libraries
can propagate easily to all projects

● not suitable wherever a strong separation for
different projects is needed

Questions?Questions?

Where's the code?

● On github:
https://github.com/brontolinux/cf-deploy

● Pull requests and code contributions more than
welcome

Thank you!
twitter: @brontolinux

email: mmarongiu@tiscali.it

LinkedIn: http://no.linkedin.com/in/marcomarongiu/

Blog: http://syslog.me/

Can I borrow one more minute?

Give a chance to the ones you love

Donate to cancer research
Donate today

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

